UNIT-2 Gear Trains

Syllabus

- Types of gear trains
- Velocity ratio of gear train's

Introduction

- Questions...
 - What is a gear train?
 - Combination of gears arranged in a series manner is called as a gear train
 - Why it is used?
 - To transfer power with large speed reduction in a small space.
 - Where it is used?
 - When power is to be transferred from one plane to another plane
 - When power is to be transferred over a large distances without using heavier gears.
 - When power is to be distributed to various sources

Different types of gears and gear trains

Classification and Aim of gear trains topic

- Gear trains are classified mainly into 4 types
 - 1. Simple gear train
 - 2. Compound gear train
 - 3. Reverted gear train
 - 4. Epicyclic gear train
- Aim of learning this topic:
 - To analyze how power is transferred from driver to others by using these gear trains.
 - So we know the formula of power..?
 - P = Torque × angular velocity
 - Torque is a rotational force which cannot be measured directly.
 - So the remaining parameter is angular velocity.

- Hence we need to find ϖ in our analysis (which is our Aim of our topic)

Analysis of gear trains

- In any gear train we have some constant things in the system:
 - Driver gear (input)
 - Driven gear (final output)
 - Intermediate gears (intermediate outputs)
- Gear ratio or velocity ratio...?
 - Ratio of speed of driven gear to driver gear
- Train value:
 - Reverse of gear ratio is known as train value.
- So do we have any relation between velocity ratio and number of teeth of gears..?
 - Yes
 - For a pair of gears $\frac{N_2}{N_1} = \frac{T_1}{T_2}$
- So as per our aim we need to find N_1 or N_2 .

Simple gear train

- What is the aim of the topic..?
 - To find the gear ratio

- A simple gear train contains a driver, follower connected by means of individual gears in a series manner.
- So how the power will be transferred from driver to follower..?
- Now we need to find the gear ratio for this gear train.

Gear ratio for simple gear train

- From the diagram of simple gear train, we observed that gear 1 is connected to gear 2, gear 2 is connected to gear 3 and so on..
- So it is also obvious that all the gears will have their individual shafts on which these gears are being mounted.
- Gear 1 driver, gear 5 driven
- When 2 gears are meshed, we know their speed ratio is inverse to their teeth ratio.
 - i.e. $\frac{N_2}{N_1} = \frac{T_1}{T_2}$

Here we need to find the ratio of speeds between driven and driver i.e. N₅ N₅ N₄ N₃ N₂ T₄ T₃ T₂ T₁ T₁

• i.e. $\frac{N_5}{N_1} = \frac{N_5}{N_4} \times \frac{N_4}{N_3} \times \frac{N_3}{N_2} \times \frac{N_2}{N_1} = \frac{T_4}{T_5} \times \frac{T_3}{T_4} \times \frac{T_2}{T_3} \times \frac{T_1}{T_2} = \frac{T_1}{T_5}$

Compound Gear Train

Compound Gear Train

- This is similar to simple gear train, whereas two or more gears are being mounted on same shaft.
- So in the fig. gears 2 & 3, 4 & 5 are being mounted on same shafts. So as they are mounted on same shafts their speeds are same. (i.e. $N_2 = N_3$ and $N_4 = N_5$)
- Now we need to find the Gear ratio for this gear train.

Gear ratio of compound gear train

- Velocity ratio = $\frac{N_6}{N_1} = \frac{N_6}{N_5} \times \frac{N_5}{N_4} \times \frac{N_4}{N_3} \times \frac{N_3}{N_2} \times \frac{N_2}{N_1}$
- But in case of compound gear system as two gears mounted on same shaft their speeds are same, so $N_2 = N_3$ and $N_4 = N_5$
- Therefore the formula is modified as $\frac{N_6}{N_1} = \frac{N_6}{N_5} \times \frac{N_4}{N_3} \times \frac{N_2}{N_1} = \frac{T_5}{T_6} \times \frac{T_3}{T_4} \times \frac{T_1}{T_2}$

Reverted gear train

Reverted Gear Train animation

Reverted Gear Train

- If the axis of first and last gear wheels are collinear, then such compound gear train can be called as reverted gear train.
- It is a special case of compound gear train.
- Aim: To find Gear ratio

Epicyclic gear train

Epicyclic gear train

- A gear train having relative motion to the gear axis is called as epicyclic gear train.
- So the axis of one gear will move relative to the axis of other.
- This gear train can be also called as planetary gear train.
- Larger speed reductions can be possible using this gear train.
- So, from the animation we can see that there is a large gear, small gear, a connector connecting both these.
- These components are called as sun gear, planet gear, arm.
- So Now as per our Aim, we need to find the velocity ratio. For finding that we have two methods
 - Algebric method
 - Tabular method.

Planetary gear train Analysis

Tabular column method

Conditions of motion	Revolution of Elements			
	Arm	Gear A	Gear B	
Arm fixed, $+x$ revolution to gear A anticlockwise	0	$+\chi$	$-\chi \frac{T_A}{T_B}$	
All elements rotated with + y revolutions	+y	+y	+y	
Total Motion	+y	x+y	$y - x \frac{T_A}{T_B}$	

Compound epicyclic gear train

Compound epicyclic gear train

- This system consists of 4 gears and an arm
 - Compound gear B-C,
 - Sun gear D
 - Gear A
 - Arm H
- Outer gear A is known as annulus gear
- Annulus gear has internal teeth
- So our Aim is to find the speed of different elements of the system.

Tabular column method-Compound epicyclic gear train

Conditions of motion	Revolution of Elements				
	Arm	Gear D	Gear B-C	Gear A	
Arm fixed, $+x$ revolution to gear A anticlockwise	0	$+\chi$	$-x\frac{T_D}{T_C}$	$-x \frac{T_D}{T_C} \frac{T_B}{T_A}$	
All elements rotated with + y revolutions	+y	+y	+y	+y	
Total Motion	+y	x+y	$y - x \frac{T_D}{T_C}$	$y - x \frac{T_D}{T_C} \frac{T_B}{T_A}$	