UNIT-2
 Gear Trains

Syllabus

- Types of gear trains
- Velocity ratio of gear train's

Introduction

- Questions...
- What is a gear train?
- Combination of gears arranged in a series manner is called as a gear train
- Why it is used?
- To transfer power with large speed reduction in a small space.
- Where it is used?
- When power is to be transferred from one plane to another plane
- When power is to be transferred over a large distances without using heavier gears.
- When power is to be distributed to various sources

Different types of gears and gear trains

Classification and Aim of gear trains topic

- Gear trains are classified mainly into 4 types

1. Simple gear train
2. Compound gear train
3. Reverted gear train
4. Epicyclic gear train

- Aim of learning this topic:
- To analyze how power is transferred from driver to others by using these gear trains.
- So we know the formula of power..?
- $\mathrm{P}=$ Torque \times angular velocity
- Torque is a rotational force which cannot be measured directly.
- So the remaining parameter is angular velocity.
- Hence we need to find \oplus in our analysis (which is our Aim of our topic)

Analysis of gear trains

- In any gear train we have some constant things in the system:
- Driver gear (input)
- Driven gear (final output)
- Intermediate gears (intermediate outputs)
- Gear ratio or velocity ratio...?
- Ratio of speed of driven gear to driver gear
- Train value:
- Reverse of gear ratio is known as train value.
- So do we have any relation between velocity ratio and number of teeth of gears..?
- Yes
- For a pair of gears $\frac{N_{2}}{N_{1}}=\frac{T_{1}}{T_{2}}$
- So as per our aim we need to find N_{1} or N_{2}.

Simple gear train

- What is the aim of the topic..?
- To find the gear ratio

- A simple gear train contains a driver, follower connected by means of individual gears in a series manner.
- So how the power will be transferred from driver to follower..?
- Now we need to find the gear ratio for this gear train.

Gear ratio for simple gear train

- From the diagram of simple gear train, we observed that gear 1 is connected to gear 2, gear 2 is connected to gear 3 and so on..
- So it is also obvious that all the gears will have their individual shafts on which these gears are being mounted.
- Gear 1 - driver, gear 5 - driven
- When 2 gears are meshed, we know their speed ratio is inverse to their teeth ratio.
- i.e. $\frac{N_{2}}{N_{1}}=\frac{T_{1}}{T_{2}}$
- Here we need to find the ratio of speeds between driven and driver i.e. $\frac{N_{5}}{N_{1}}$.
- i.e. $\frac{N_{5}}{N_{1}}=\frac{N_{5}}{N_{4}} \times \frac{N_{4}}{N_{3}} \times \frac{N_{3}}{N_{2}} \times \frac{N_{2}}{N_{1}}=\frac{T_{4}}{T_{5}} \times \frac{T_{3}}{T_{4}} \times \frac{T_{2}}{T_{3}} \times \frac{T_{1}}{T_{2}}=\frac{\boldsymbol{T}_{1}}{\boldsymbol{T}_{5}}$

Compound Gear Train

Compound Gear Train

- This is similar to simple gear train, whereas two or more gears are being mounted on same shaft.
- So in the fig. gears $2 \& 3,4 \& 5$ are being mounted on same shafts. So as they are mounted on same shafts their speeds are same. (i.e. $\mathrm{N}_{2}=\mathrm{N}_{3}$ and $\mathrm{N}_{4}=\mathrm{N}_{5}$)
- Now we need to find the Gear ratio for this gear train.

Gear ratio of compound gear train

- Velocity ratio $=\frac{N_{6}}{N_{1}}=\frac{N_{6}}{N_{5}} \times \frac{N_{5}}{N_{4}} \times \frac{N_{4}}{N_{3}} \times \frac{N_{3}}{N_{2}} \times \frac{N_{2}}{N_{1}}$
- But in case of compound gear system as two gears mounted on same shaft their speeds are same, so $\mathrm{N}_{2}=\mathrm{N}_{3}$ and $\mathrm{N}_{4}=\mathrm{N}_{5}$
- Therefore the formula is modified as $\frac{N_{6}}{N_{1}}=\frac{N_{6}}{N_{5}} \times \frac{N_{4}}{N_{3}} \times \frac{N_{2}}{N_{1}}=\frac{T_{5}}{T_{6}} \times \frac{T_{3}}{T_{4}} \times \frac{T_{1}}{T_{2}}$

Reverted gear train

Reverted Gear Train animation

Reverted Gear Train

- If the axis of first and last gear wheels are collinear, then such compound gear train can be called as reverted gear train.
- It is a special case of compound gear train.
- Aim: To find Gear ratio

Epicyclic gear train

Epicyclic gear train

- A gear train having relative motion to the gear axis is called as epicyclic gear train.
- So the axis of one gear will move relative to the axis of other.
- This gear train can be also called as planetary gear train.
- Larger speed reductions can be possible using this gear train.
- So, from the animation we can see that there is a large gear, small gear, a connector connecting both these.
- These components are called as sun gear, planet gear, arm.
- So Now as per our Aim, we need to find the velocity ratio. For finding that we have two methods
- Algebric method
- Tabular method.

Planetary gear train Analysis

Tabular column method

Compound epicyclic gear train

Compound epicyclic gear train

- This system consists of 4 gears and an arm
- Compound gear B-C,
- Sun gear D
- Gear A
- Arm H
- Outer gear A is known as annulus gear
- Annulus gear has internal teeth

- So our Aim is to find the speed of different elements of the system.

Tabular column method-Compound epicyclic gear train

Conditions of motion	Revolution of Elements			
	Arm	Gear D	Gear B-C	Gear A
$\begin{aligned} & \text { Arm fixed, }+x \\ & \text { revolution to gear } \\ & \text { A anticlockwise } \end{aligned}$	0	$+x$	$-x \frac{T_{D}}{T_{C}}$	$-x \frac{T_{D}}{T_{C}} \frac{T_{B}}{T_{A}}$
$\begin{aligned} & \text { All elements } \\ & \text { rotated with }+\mathrm{y} \\ & \text { revolutions } \end{aligned}$	+y	+y	+y	+y
Total Motion	+y	$x+y$	$\mathrm{y}-x \frac{T_{D}}{T_{C}}$	$\mathrm{y}-x \frac{T_{D}}{T_{C}} \frac{T_{B}}{T_{A}}$

