# UNIT-1

#### GYROSOPIC COUPLE AND PRECESIONAL MOTION

*Course Objective: To help students to understand the gyroscopic effect on vehicles, ships and planes.* 

Course Outcome: The student will be able to apply the knowledge of gyroscopic couple

### Syllabus

- Introduction
- Precessional and angular motion
- Gyroscopic couple
- Effect of gyroscopic couple on
  - Aero plane
  - Naval Ship
- Stability of automobiles
  - Four wheel automobile while moving in a curved path

### Introduction

- Title of the chapter contains two individual topics:
  - Gyroscopic couple
  - Precessional motion.
- What is a couple...?
  - A turning force which tends a body to move in a curved path w.r.t an axis.
- So Gyroscopic couple means..?
  - Gyroscopic turning force making the body to rotate about an axis...
- What is this Gyroscopic Turning force and what type of effects it is going to create is our discussion of interest.
- Next topic in our title is --- Precessional Motion..
- What is precessional motion..?
  - Making a body/system to move in a particular path without any failure.

### Gyroscopic Couple

- Let us learn this topic using the 3W Concept  $\rightarrow$  What, When, Where
  - When it is going to occur in the system...?
  - Where is it going to act on the system...?
  - What is a gyroscopic couple...?
- When it is going to occur in the system..?
  - When a system is experiencing 2 simultaneous rotational motions whose axis are perpendicular to each other, then this gyroscopic force will be created.
- Where is it going to act on the system..?
  - On the axis perpendicular to both the axis.
- What is a gyroscopic couple..?
  - It is a rotating force acting on a system when the system is experiencing with 2 simultaneous rotational motions whose axis are perpendicular to each other, then on the third perpendicular axis this force will be created.

### Active Force and Reactive Force

- Active force  $\rightarrow$  gyroscopic force created by the system due to its simultaneous dual rotations about perpendicular axis
- Reactive force → opposite gyroscopic force created manually in order to avoid the effect caused by the active gyroscopic force.
- Why apply a reactive force..?
  - To keep the system in a stable equilibrium position.

### Terminology

- Let us discuss the various terminology used in this by considering a situation:
  - Let a disc is mounted on a shaft is rotating with a certain angular velocity (ω) about X-axis, now the shaft is made to rotate about Z-axis with angular velocity (ω<sub>p</sub>)
- So in the above situation we have 2 simultaneous rotational motion occurring in the system and the axis of these motions are perpendicular.
  - Hence our active gyroscopic couple will be created on an axis perpendicular to both of these two axis (i.e. Y-axis)
- Terminology:
  - X- axis : Axis of spin
  - Z- axis : Axis of precession
  - Y- axis : Axis of active or reactive gyroscopic couple

# Magnitude of Gyroscopic Couple

- Aim:
  - To make the system in a balanced position.
- How:
  - By knowing the magnitude of the active gyroscopic couple.
- New Aim:
  - Find the magnitude of active gyroscopic couple.
- What is the formula for Force (as per newton's 2<sup>nd</sup> law)
  - $F = m \times a$  [this formula is applicable if system motion is linear]
  - So what happens when system motion change from linear to rotating...?
    - Force becomes couple
- Now what happens if force becomes couple
  - Mass becomes moment of inertia (I) and linear acceleration becomes angular acceleration ( $\alpha$ )
- Now the formula for Couple is
  - $C_G = I \times \alpha$
  - And since we need gyroscopic couple, the  $\alpha$  will be known as angular acceleration of the system moving in 3<sup>rd</sup> perpendicular direction/axis (i.e. Y-axis)

### Magnitude of Gyroscopic couple

- Let us consider the same situation and find the Magnitude of gyroscopic couple:
  - Situation: Disc on shaft spinning with 

     rad/sec (about X-axis). Now shaft is made rotated about Z-axis with a angular displacement of δθ.
- Let I be the moment of inertia of the disc.
- Hence as per our vector theory *xx*<sup>I</sup> represents the total change in angular velocity
- Total angular acceleration =  $\alpha_r + \alpha_N$
- Since we need the perpendicular component only, so we require  $\alpha_N$



### Magnitude of Gyroscopic couple

- Let us draw the velocity diagram for the above situ
- From the velocity diagram,
  - ox initial angular velocity =  $\omega$
  - $ox^{I}$  final angular velocity =  $\omega + \delta \omega$
  - *xx<sup>I</sup> Change in angular velocity*
- In order to change its position, from x to  $x^{I}$  the system should travel in both horizontal and vertical path (i.e. radial and normal)
  - *xr radial direction*
  - $x^{I}r$  Normal direction
- As per our previous discussion, from Newton 2<sup>nd</sup> law, the formula for gyroscopic couple is  $C_G = I \times \alpha_N$



### Magnitude of Gyroscopic couple

- Normal acceleration  $\alpha_{\rm N} = \frac{x^I r}{\delta t}$
- So from the diagram  $\Delta orx^{I} \rightarrow sin \,\delta\theta = \frac{x^{I}r}{ox^{I}} \rightarrow x^{I}r = ox^{I} \sin \delta\theta$
- Hence  $\alpha_{\rm N} = \frac{\sigma x^{\rm I} \sin \delta \theta}{\delta t} = \frac{(\omega + \delta \omega) \sin \delta \theta}{\delta t} = \frac{\omega \sin \delta \theta + \delta \omega \sin \delta \theta}{\delta t}$
- Assuming  $\delta\theta$  is very small and hence  $\sin \delta\theta = \delta\theta$  and since  $\delta\theta$  itself is small so multiplication of  $\delta\omega$  with  $\delta\theta$  will be very small so we can ignored.

60

- Therefore  $\alpha_{\rm N} = \frac{\omega \,\delta\theta}{\delta t} = \omega \,. \frac{\delta\theta}{\delta t}$
- Hence  $C_G = I. \alpha_N = I \omega . \frac{\delta \theta}{\delta t}$
- $\left[\frac{\delta\theta}{\delta t}$  is change of angular displacement w.r.t time about Z axis (precession axis)  $\right]$

• So 
$$\frac{\delta\theta}{\delta t} = \omega_p \rightarrow$$
 hence  $C_G = I \omega \omega_p$ 

### Effects of Gyroscopic couple on Aero plane



- The front portion of aero plane consists of a rotor/propeller which rotates with a certain rpm, it is used to move the plane in forward direction.
- There is a tail attached at the back side of plane, through which the direction of the plane can be controlled.
- Situation: Turning the aero plane
- Aim: To analyse what happens if the aero plane turns.

### Gyroscopic effects on aero plane (contd.)

- $\omega$  = Angular velocity of the engine in rad/s,
- m = Mass of the engine and the propeller in kg,
- k = Its radius of gyration in metres,
- I = Mass moment of inertia of the engine and the propeller in kg-m<sup>2</sup> =  $m.k^2$ ,





### Gyroscopic effects on aero plane (contd.)

#### Looking from Rear End (Back Side)



### Effect of Gyroscopic couple on Naval Ship

• Terminology of a ship



# Effect of Gyroscopic couple on Naval Ship

- In case of ship the gyroscopic effect is discussed in 3 different cases:
  - Steering
    - Turning the ship in right/left direction while it is moving forward.
  - Pitching
    - Movement of a ship in up and down direction in a vertical plane about the transverse axis (Y-axis).
  - Rolling
    - Rotating of the ship along the axis.

#### Steering Action:

- Steering action of the ship is similar to that of the of aero plane which is turning in right/left direction.
- So the effect of gyroscopic and the magnitude also remains same.

#### Effect of Gyroscopic couple on Naval Ship (steering)

#### Looking from Rear End (Back Side)



### Effect of Gyroscopic couple on Naval Ship (Pitching)

#### **Pitching Action:**

• Movement of a ship in up and down direction in a vertical plane about the transverse axis.



### Effect of Gyroscopic couple on Naval Ship (Pitching)

- In this action the ship pitches about the transverse axis (i.e. Z-axis)
- Assumption: for the purpose of analysis we assume that the Ship pitches in form of S.H.M.
- Effect of Gyroscopic couple on ship during pitching:
  - Use Right hand thumb rule
  - Look from Top/Bottom View.

Rotor of the Ship is rotating in Anti - Clockwise direction when viewing from rear end

| Direction of Pitching | Active G.C                           | <b>Reactive G.C</b>                     |
|-----------------------|--------------------------------------|-----------------------------------------|
| Upwards               | Couple applied on Port Side          | Couple to be applied on star board side |
| Downwards             | Couple applied on Star-board<br>Side | Couple to be applied on port side.      |

### Magnitude of gyroscopic couple during Pitching

- The general formula for gyroscopic couple is
  - $C_G = I. \omega. \omega_p$
- Where as in case of pitching we assumed the precession motion of ship as SHM.
- Hence as per SHM, the angular displacement equation is
  - $\theta = \Phi \sin \omega_1 t$
  - $\omega_1$  represents natural frequency =  $\frac{2\pi}{t_n}$
  - And angular velocity of precession  $(\omega_p) = \frac{d\theta}{dt} = \Phi$ .  $\omega_1$ .  $\cos \omega_1 t$
  - The maximum value for cos is 1, so using this we get,  $(\omega_p)_{max} = \Phi$ .  $\omega_1$
  - Where  $\Phi$  represents the angular displacement (amplitude of swing from mean position)
  - Hence  $(C_G)_{max} = I. \omega. (\Phi. \omega_1)$



#### Effect of Gyroscopic couple on Naval Ship (Rolling)

- Basic Rule for Gyroscopic force to act on the system:
  - Two simultaneous rotations should happen and their respective axis should be perpendicular
  - Then only gyroscopic couple will act on the system on the 3<sup>rd</sup> perpendicular axis.
- In case of rolling the axis of spin and axis of precession are parallel, hence as both these axis are not perpendicular, No Gyroscopic effect is observed.

### Stability of a System (Automobile)

- Stability means:
  - The property of a body to move in a steady motion without effecting from any of the external forces.
- In case of automobiles we have basically 2 types:
  - Four wheel automobile
  - Two wheel automobiles.
- So what are the forces acting on an automobile while it is moving in SL Motion and trying to take a turn:
  - Weight of the automobile
  - Force due to centrifugal couple
  - Force due to Gyroscopic Couple.

### Analysis of Four Wheel automobile

- Aim:
  - To maintain stability of the automobile.
- As discussed, three forces will act on the system which is in motion and taking a turn.
- Where does these forces act on our automobile..?
  - On the wheels of the automobile.
- So we need to find the magnitude of the **resultant force** acting on the wheels of the automobile.
- So let us discuss about each force acting on the automobile system in detail.

### Analysis of Four wheel automobile

- Situation:
- We have an automobile with four wheels moving in forward direction taking a turn (say left turn).
- Let us take the following parameters:
  - m mass of the vehicle in kg
  - $r_w$  radius of the wheels
  - R radius by which the vehicle turns
  - $I_w$  moment of inertia of the wheels
  - $I_E$  moment of inertia of rotating components of engine
  - $\omega_w$  angular velocity of the wheels
  - $\omega_E$  angular velocity of the rotating engine components.
  - $G-gear\ ratio = \frac{\omega_E}{\omega_w}$
  - v linear velocity of the automobile =  $r_w \omega_w$

### **Force 1: weight of the automobile**

- Let "W" be the weight of the automobile
- The weight of the automobile always acts in downward direction, vertically downwards.
- Magnitude of reaction force..?
  - Assuming all the wheels share equal load of the automobile and hence the reaction at each wheel is  $\frac{W}{4}$
- Direction of reaction force..?
  - Vertically upwards.

- In our earlier discussion we had derived the expression for the magnitude of gyroscopic couple which is  $C_G = I$ .  $\omega \omega_p$
- But this is couple, what we require is force.
- We know that couple = force × perpendicular distance.
- The gyroscopic couple will be created in the system when we have two simultaneous rotational motions
- So in our automobile, what are the rotating components..?
  - Wheels
  - Engine rotating components.
- Hence the gyroscopic couple will be created by those components of the system.
  - $C_W$  and  $C_E$

- The magnitude of gyroscopic couple created by wheels and engine components is
  - $C_W = I_w \omega_w \omega_p \times \text{ no of wheels}$
  - $C_E = I_E \omega_E \omega_p$
- Direction analysis:
  - Let X axis be the axis of spin of the wheels
  - If the automobile take a turn in either left/right, Y will be axis of precession
  - Hence Z axis represents the axis of gyroscopic couple.
- Therefore at points A, B, C, D the gyroscopic couple acts in vertical direction trying to rotate the system.
- The total gyroscopic force =  $C = C_E \pm C_w$



- So total gyroscopic couple is
  - C = 4 I<sub>w</sub>  $\omega_w \omega_p \pm I_E \omega_E \omega_p = \omega_w \omega_p [4 I_w \pm G.I_E]$
- Let 'P' be the force acting on both the inner/outer wheels
- Couple = force (P) × perpendicular distance (*x*)
- Hence gyroscopic force  $P = \frac{Total \ couple \ (C)}{perpendicular \ distance \ (x)}$



- So now we know the magnitude of this gyroscopic force, now we need to find the direction
- Direction:
  - Due to this gyroscopic couple occurred while vehicle is turning, the whole system will try to overturn about Z axis
  - The gyroscopic couple will apply vertically downward force (P) on inner wheels and upward force on outer wheels (P) creating a couple action.

- Hence the reaction force due to this gyroscopic couple force on the automobile wheels is
  - Downward force on inner wheels
  - Upward force on outer wheels.
- The magnitude of gyroscopic force on each individual wheels is  $\frac{P}{2}$
- So at points A, C which are inner wheels the gyroscopic force Inter wheels the gyroscopic force Inter wheels upward direction and at points B, D it acts in upward direction.



- All rotating systems will experience centrifugal force in radially outward direction.
- Since the automobile is trying to turn in a curved path, centrifugal force acts on the system.
- Again as the force is vector, we need to find its magnitude and direction.
- The magnitude of centrifugal force acting on the system is  $F_{\rm C} = \frac{m N^2}{R}$
- This magnitude of centrifugal force acts from the center position of the automobile.
- But we are interested to find the magnitude of the force acting at the wheels... so how to find that..?

- To answer our question, we need to clear about another small concept...
- What kind of force is acting on the wheels in order to make it move in a curved path...?
  - Couple
- So let us find the magnitude of the couple created by the centrifugal force.
- Couple due to centrifugal force =  $F_c \times$  perpendicular distance
- Now we have another question here ... what is perpendicular distance ..?
- So in order to know about the perpendicular distance, we need to know in which axis-direction  $F_C$  acts.

- As the vehicle is turning in right/left, the centrifugal force acts in those direction.
- let "h" be the distance of centroid of the automobile from ground level.
- So the perpendicular distance = h
- So the couple due to centrifugal force =  $F_c \times h$
- Now this magnitude of centrifugal couple is acting on the four wheels.
- We need to convert this centrifugal couple in to a force which acts on the wheels in Z axis direction.
- Let Q be that force acting on 2 inner/outer wheels.



- So  $Q = \frac{centrifugal couple}{perpendicular distance}$
- So this perpendicular distance = x
- Hence  $Q = \frac{F_c \times h}{x}$
- So now we had obtained the magnitude of force due to centrifugal couple acting at the wheels.
- As force is vector, we need to find its direction also.
- As discussed for gyroscopic force, the direction of force due to centrifugal couple (Q) also acts downwards for inner wheels and upwards for outer wheels.
- Hence each wheel experience  $\frac{Q}{2}$  magnitude of force and acts downwards for inner wheel and upward for outer wheels.

### **Resultant forces on wheels**

- Force is a vector, so it has both direction & magnitude.
- We discussed that forces ad their respective magnitudes acting on the system.
- The forces and their magnitudes are:
  - Weight acting on each wheels  $\left(\frac{W}{4}\right)$  in upward direction.
  - Gyroscopic force on all the wheels having magnitude  $\left(\frac{P}{2}\right)$ 
    - For inner wheels, in downward direction.
    - For outer wheels, in upward direction.
  - Centrifugal force on all wheels having magnitude  $\left(\frac{Q}{2}\right)$ 
    - For inner wheels, in downward direction.
    - For outer wheels, in upward direction.

### **Analysis of Four Wheel automobile**

- Total Resultant forces on Wheels
- Total force at inner Wheels  $=\frac{W}{4} \frac{P}{2} \frac{Q}{2}$  Total force at outer wheels  $=\frac{W}{4} + \frac{P}{2} + \frac{Q}{2}$

#### Automobile taking a left turn



### Analysis of a Two Wheel automobile

• Aim:

- To maintain stability of the automobile.
- To find the balancing mass.
- When balancing is required in case of two wheel automobiles?
  - While moving in straight path (no gyroscopic force acts)
  - While taking a turn (when gyroscopic force acts on the system)
- When moving in straight path how balancing of vehicle done?
  - Just sit straight on the bike and done move unnecessarily.
- While taking a turn how to do balancing ?
  - During turning as per our discussion gyroscopic force acts on system.
  - So the person should tilt in the opposite direction making him as a counter weight creating a balancing couple to make the system stable.